name = input(“enter your name: “)

score = 0
if name != “your name”:
This week we looked at subroutines, functions, els:(fore = (len(name) * ord(name[el)) % 10
procedures and scope. The first thing we looked at Ci:’é-iaf‘;gg_egg() :
were procedures, which are a way of “bundling up”
lines of code, giving them a name, and running print(“Your name score is “ + str(score));

them when we need them. Procedures allow us to
reduce the need to repeatedly copy + paste blocks
of code which are repeated throughout your source

code. Instead, we can bundle them up together, def print_easter_egg():
print(“haha. very funny.”);
print(“for that, you get ”);
print(“-500 points. ");

and just invoke them where necessary!

For example, imagine you have written a piece of
software which gives the user a text-based menu
where they can select an action. The lines of code
need to show this menu is something like 5-10
lines long, as the menu is this many lines too. Now, enter your name: your name
imagine you have to show this menu at a bunch of
points throughout your program. What if you
wanted to change the name of one action? You'd

haha. very funny.
for that, you get

-500 points.
have to replace all instances of the name,
one-by-one. This is why procedures as so handy! Your name score is -500
e Experiment with procedures in Python:
1. Create a procedure which prints a poem of your choice. When the user types in the
word “poem”, call the procedure and show the poem. Remember:
a. When defining procedures, you need to use the def keyword.
b. Procedures need a name, followed by brackets and a colon.
C. When invoking a (parameterless) procedure, you need to use two brackets to
call it, like: show_poem()
2. Create a procedure which shows a custom message, and asks the user for input, using
the input() function.
3. Create a procedure which uses a for loop to print the numbers 1-10 backwards,

followed by the word “blast off!”, and test that it works.

We also looked at functions (procedures which
def add (a, b) : “return” a value) and parameters. Functions are

return a + b very useful tools -- they allow us to communicate
and get answers from procedures. With a function,
a value is “returned” from the function with the
return key. This value can then be used in another
portion of the code.

Another interesting feature are parameters.
Parameters allow us to pass data into a function.
def first_char(s): We can then use that data in whatever calculation

return s[0] we perform. Where the “return” keyword passes
data OUT of a function, parameters allow us to
pass data INTO a function. This is a very powerful
feature! Using these two tools (returning and
parameters) we can build very useful functions
which take some form of data and transform into
another form.

def réndom_St ring(length): For example, consider an “add” function (see the
build_str = example on the left). This would take two numbers
for char in range(length): (lets call them a and b) and add them together. It
r = random.randrange(33, 126) would then “return” the result of this calculation: a
build_str += chr(r) +b.
return build_str;
0 Experiment with functions & parameters in Python:
1. Create a function called pi, which takes no parameters, and will always return

3.141592. Try print out the value of calling this function, by using print(pi()).
What do you think you’ll see?

2. Create a function called greet, which takes one parameter (the name of the person)
and return a greeting with their name in it. For example, “Hello {name}!”.
3. Using the random module (at the top of your code, put: import random), create a

function called flip_coin, with no parameters. This should return “heads” 50% of
the time, and “tails” 50% of the time:
a. Can you expand this to take a parameter called heads_chance, which alters
the probability you get a heads?

